
41 OIC-CERT Journal of Cyber Security (2018) 1.1:41-52 
ISSN 2636-9680 Print 

Preventing Reflective DLL Injection on UWP Apps 

Mojtaba Zaheri1, Salman Niksefat2, and Babak Sadeghiyan3 
1,2,3APA Research Center, Amirkabir University of Technology 

Abstract - Universal Windows Platform (UWP) is the Microsoft’s recent platform-homogeneous 
application architecture.  It al-lows a code to run on variety of devices including PC, mobile devices, etc., 
without needing to be rewritten or recompiled.  UWP apps are becoming more and more popular and 
consequently this new application platform is becoming the next attack target for hackers and malware 
developers.  In this paper, we first study the issue of host-based code injection attacks (HBCIA) in UWP 
apps.  We show that de-spite the embedded mechanisms in UWP to maintain code integrity and to only 
allow legitimate DLLs to be loaded in memory, it is still possible to circumvent the defensive mechanisms 
and launch a variant of HBCIA called Reflective DLL Injection on UWP apps.  We then propose a novel 
defence mechanism against reflective DLL injection attacks on UWP apps.  Our proposed method can 
detect malicious/benign injection attempts on UWP apps and prevents malicious injections while allowing 
the benign injections to proceed as normal.  Our experiments show that the proposed defence has less than 
1% impact on system’s overall performance and can be used inside anti-virus (AV) products to strengthen 
their protection capabilities. 

KEYWORDS – DLL Injection, Universal Windows Platform, UWP 

I. INTRODUCTION

Universal Windows Platform (UWP), first 
introduced in Windows 10, is the Microsoft’s 
platform homogeneous application 
architecture.  Its purpose is to allow 
development of universal applications that run 
on a variety of platforms including PC, mobile 
devices, and IoT devices.  This relieves the 
code from the need to be rewritten or 
recompiled for each platform.  Similar to 
Android and IOS, this platform has its own 
proprietary software store through which 
Microsoft can have more control over the 
distributed UWP applications.  Since its 
release, Microsoft has encouraged the 
software developers to write code in UWP 
and the company itself included some UWP 
applications in Windows 10, including 
Microsoft Edge browser and Microsoft 
Groove Music. 

With rapid popularity of UWP applications 
among soft-ware developers and considering 
the strong support of Microsoft, UWP apps 
are becoming more and more popular among 
end users and consequently this new platform 
has become the next attack target for hackers 
and malware developers.  One important 
category of intra-host attacks that can 
potentially target UWP applications is Host 
Based Code Injection Attacks (HBCIA). 
HBCIA is defined as locally copying a code 
from a malicious source process into the 
address space of a target process and 

executing the code [1]. A recent research in 
[1] shows that near 64% of the total of 162850
sample malware use HBCIA as part of their
malicious behaviour.

One strong motivation for using HBCIA by 
malware is to evade detection and bypass 
host-based firewalls: Mal-ware usually 
connect to their C&C 1 servers for sending in-
formation and receiving new commands. 
Thus host-based firewalls are generally 
sensitive to outgoing connections of locally 
running applications and they have rules to 
prevent unknown applications from accessing 
the network.  To prevent being caught by the 
firewalls, new malware generally uses smart 
techniques for connecting to the Internet.  One 
such technique is taking advantage of 
HBCIAs, i.e., injecting a software module to 
another legitimate running process such as 
Mozilla Firefox, Internet Explorer or Google 
Chrome and communicating using the 
injected module.  Among these browsers, 
Microsoft Internet Explorer has been more 
promising for hackers as it is generally 
available in Windows family of operating 
systems by default.  Moreover, Microsoft-
Edge, the Microsoft’s new UWP-based 
browser introduced in Windows 10, can be the 
next injection target for malware that are 
willing to launch a code-injection attack. 

In this paper, we demonstrate that it is still 
possible to launch successful DLL injection 
attacks by a technique called reflective DLL 
injection [2][3] despite the new security 



Preventing Reflective DLL Injection on UWP Apps 

42  OIC-CERT Journal of Cyber Security 

mechanisms embedded in UWP framework to 
maintain code integrity and prevent un-
signed/malicious DLL injections.  Then, we 
propose a defence mechanism against such 
attacks on UWP apps. 

Some currently published methods such as 
[4][5] try to parse the victim process memory 
and find if a malicious DLL is loaded into the 
process memory.  Then, they try to remove it 
and clean the memory.  How-ever, it’s not a 
sound and complete countermeasure, as the 
malware is already loaded in the memory and 
can do its malicious activities before being 
removed from the memory.  In contrast, in our 
proposed mitigation, we try to prevent the 
malware to load the malicious DLL from the 
very beginning. Another challenge in 
countering such attacks is that not all code 
injections are malicious. The operating system 
may inject some legitimate DLLs into 
processes. Moreover, processes may inject 
code into their own address space for 
purposes like loading plug-ins, etc. Therefore, 
we need a method to distinguish between 
malicious and benign injections. Our proposed 
defence mechanism does this with high 
precision. In case of a malicious injection, it 
successfully prevents the DLL to be written 
into the target process and raises an alarm. On 
the other hand, in case of a benign injection, 
the injection proceeds as normal. Finally, by 
taking advantage of PCMark benchmarking 
tool, we show that our proposed technique 
imposes a little overhead on operating system. 

To summarize, our contribution in this 
paper is a mitigation technique against 
reflective DLL injection on UWP apps that 
provides the following original advantages: 

i. It entirely prevents a malware from 
loading its malicious module into the 
target process memory. 

ii. The proposed mechanism is very 
efficient as it only monitors and 
modifies the behaviour of one API 
(NtWriteVirtualMemory), which 
leads to a very low overhead on the 
system performance. 

iii. It doesn’t have any effects on normal 
DLL injections, as it’s possible to 
load legitimate/signed DLLs into 
target UWP apps through calling the 
LoadLibrary API. 

This paper is organized as follows: In 
section II, we re-view related work including 
HBCIA methods and the existing 

countermeasures. In section III, we review the 
security mechanisms embedded in UWP apps 
that are related to HBCIA attacks. In section 
IV, we demonstrate the methods that can 
circumvent the integrity mechanisms of UWP 
and perform the reflective DLL injection 
attack in UWP frame-work. In section V, we 
present our defensive mechanism to reflective 
DLL injection attacks. In section VI, we 
present the results of the evaluation of the 
proposed system. Finally, section VII 
concludes the paper. 

II. RELATED WORK 

The works in host-based code injection 
attacks can be classified into methods for 
performing such attacks, and mechanisms for 
detection and prevention. In this section, we 
review these works and considering the 
detection and prevention mechanisms, we 
claim that none of them is suitable for 
defending against reflective DLL injection on 
UWP apps. 

A. Performing HBCIA 

Since these methods have rather a technical 
nature, the concept has received much more 
attention in the technical forums rather than 
the research papers.  

In [1], the authors have presented a semi-
formal definition for host-based code injection 
attacks that we cited in the introduction. The 
paper has presented the basic idea of the 
technique in three main steps including I) 
Victim process selection, II) Code copying, 
and III) Code execution. This paper also 
mentions several motivations behind using 
HBCIAs including interception of critical 
information, privilege escalation, and 
detection avoidance.  

In [6], a classification on various DLL 
Injection techniques is presented. This paper 
classifies these techniques as follows: 
CreateRemoteThread [7], Creating a Proxy 
DLL [8], Modification of Windows Registry 
[9], Windows Hooks [10][11], Using a 
Debugger [12], Patching the IAT [13] and 
Reflective Injection [2][14].  

Most of the above techniques can’t be used 
to inject into UWP apps because the 
LoadLibrary API has been limited by UWP 



Preventing Reflective DLL Injection on UWP Apps 

43  OIC-CERT Journal of Cyber Security 

framework code integrity mechanism. 
However, a specific type of DLL Injection 
called Reflective Injection which was 
introduced in [2] can be used to circumvent 
this mechanism. This method can load a DLL 
on UWP apps through the concept of 
reflective programming without directly using 
LoadLibrary API. In section 4, further details 
about this technique is presented. 

B. Detecting and Preventing HBCIA 

Since the HBCIAs need to have local 
access to the tar-get system, these types of 
attacks had not been considered very 
hazardous in the past. However, the advances 
in HB-CIA techniques and ever-increasing 
number of malwares in recent years have 
motivated the security researchers to work on 
mitigation mechanisms for these attacks. In 
the following, we review some of these 
methods. 

In [1], a mechanism named BeeMaster is 
proposed to prevent host-based code 
injections through using honeypot paradigm. 
In this mechanism, a master bee and multiple 
worker bees are used. The master bee creates 
and instruments the workers to find if a code 
injection is occurred. If so, the master bee 
creates a memory dump and terminates the 
worker bee. The downside of this mechanism 
is that the detection only works on the 
processes that are created by the master bee, 
and therefore it cannot detect the targeted 
injections that occur on other processes of the 
system. 

[15] aims to detect malicious DLL 
injections by evaluating the injected DLLs 
through the information provided by the 
process snapshots. For this purpose, it checks 
some common malicious DLL characteristics 
in the loaded DLLs to find a match. 
Nevertheless, one of the drawbacks of this 
technique is that it cannot detect the attack 
before the injection, so it cannot prevent the 
malicious DLL from being loaded. In [16] a 
similar technique is opted for to detect 
malicious DLLs through their characteristics 
by using machine learning methods and has 
the similar defects of [17]. 

Some of the code injection methods 
mentioned in section 2.1 are useful for 
detection and prevention purposes.  For 
instance, in [18] a mechanism called DLL 
Preemptive Injection is used that whenever 
the system is loading the UrlMon DLL to a 

process, it interrupts the process and loads a 
monitoring module that later checks the API 
call patterns in the target process to see if its 
behavior is malicious. However, the proposed 
method is only effective against Trojan 
downloaders. 

Also, Detecting the Code Injection Engine 
(DCIE) [19] tries to reject all the suspicious 
thread creating calls by hooking APIs and 
tracing three main steps of code injection 
attacks: allocating memory, writing to the 
memory, and creating the thread. Although 
this method prevents the injection attacks, it 
has two major weaknesses; 

i. It rules out injection of legitimate and 
signed DLLs, and  

ii. It hooks three APIs, which decreases 
system’s performance. 

In case of reflective injection, the articles 
[20][21] propose ideas to check the memory 
of running processes periodically and search 
to find if there is any malicious content, and 
then they try to delete the infected memory 
pages, change their permissions, or even kill 
the infected process.  However, during the 
time span between the two checks the 
malware can harm the system. 

In comparison with previous methods, in 
this paper we propose a countermeasure 
against reflective DLL Injection on UWP 
apps, which is very effective, hooks only one 
API so it does not depend on API succession 
and has a very low impact on the system’s 
performance.  Moreover, through its 
combination with UWP Binary mitigation 
mechanism, it still lets legitimate DLLs to be 
loaded without any limitation.  In section V5, 
our proposed countermeasure is presented. 

III. UWP SECURITY MECHANISMS 

Before addressing the issue of code 
injection attacks on UWP apps, we should 
first review several security mechanisms 
embedded in UWP framework to prevent the 
classic injection attacks to happen. 
Microsoft’s attitude toward UWP is not only a 
better user experience but a more secure 
environment for application development that 
makes it harder for malware to penetrate 
UWP-based devices.  Two important security 
mechanisms in UWP are "App Container" and 
"Code Integrity Enforcement" which are 



Preventing Reflective DLL Injection on UWP Apps 

44  OIC-CERT Journal of Cyber Security 

directly related to HBCIA attacks. We review 
these mechanisms in this section. 

A. App Container 

UWP framework is equipped with a new 
security sandbox called App Container which 
provides more fine-grained per-mission 
assignments and limits unauthorized read and 
write operations throughout the system.  App 
Container helps to make sure that an UWP 
app is only restricted to its defined security 
permissions.  In the following, we review a 
number of App Container capabilities. 

Limit access to files and peripherals.  UWP 
apps are restricted to access directly to only 
two directories: the app’s WindowsApps 
directory in Program Files, and the app’s 
package directory located in AppData.  The 
full path to the WindowsApps is 
[Win_Drive]:\Program Files\WindowsApps. 

All files stored by apps in WindowsApps 
have to be static files that don’t change 
through the app’s lifetime.  To enforce this 
rule, files stored by applications in this 
directory go through integrity checks before 
the app is launched. If a file in this directory is 
modified, the app will fail those integrity 
checks and refuse to launch. Also, the app’s 
local AppData directory is located in 
[Win_Drive]:\Users\[UserName]\AppData\Lo
cal\Packages. 

This directory is meant to be a place for 
apps to store dynamic files that can change 
over the time.  As such, files in this directory 
don’t go through integrity checks because it is 
meant to be a place for apps to store cache 
files, settings files, save files, and more. 

Integrity Levels. App Container is 
implemented using the concept of Integrity 
Levels.  Considering the definition in 
Microsoft’s MSDN (Microsoft, n.d.-c), the 
Level has one of labels as System, High, 
Medium, Low, Untrusted. 

This notion has been introduced in 
Windows Vista and is attributed to processes 
and objects.  This mechanism prevents low 
level processes from reading or modifying 
high level processes and objects. 

In Windows 8, Integrity Levels have been 
combined with the App Container, and limit 
processes to only read and write in their 
restricted area.  This concept helps to ensure 
that the program does not have any access to 
the areas that are out of its range, unless the 
access is explicitly granted.  To address this 
issue, every app container is assigned with a 

SID2, and like users, the programs that are 
running in app containers. 

Security Identifier can be part of Built-In 
groups, and consequently, have access to 
specific resources on the system.  The 
associated name for these App Container 
Built-In groups is "Capabilities". 

Specifically, in case of DLL loading, it’s 
worth mentioning that all DLLs must have the 
read/execute per-missions of SID "S-1-15-2-
1" which is equivalent ID for 
ALL_APPLICATION_PACKAGES, in 
DLL’s Access Control List (ACL) 
(VoxelBlock, 2016). 

B. Code Integrity Enforcement 
 

Another important security mechanism in 
UWP apps is the Code Integrity Enforcement 
[22].  This mechanism is applicable in both 
process and kernel levels.  The process-level 
enforcement is useful until the time the 
process is not compromised because the code 
integrity check can be disabled in a hacked 
process by the malware.  Therefore, Microsoft 
has implemented the enforcement in the 
kernel-level to strengthen it against hacked 
processes and to prevent mal-ware from 
disabling this mechanism. 

This mechanism activates during the 
LoadLibrary() API call.  When a binary is 
going to be loaded, the kernel calls 
NtCreateSection() and then MiCreateSection() 
APIs. This last API finally invokes 
MiValidateSectionCreate() API which uses 
ci.dll (Code Integrity) to check the file 
signatures.  If the verification does not match 
the defined policy, the kernel won’t create the 
section and will return an error.  The 
mitigation is performed by the kernel, so to 
turn off the mitigation, the intruder must have 
the kernel-level (ring 0) privilege [23]. 

The integrity check policies are defined in a 
structure called Process Signature Policy in 
"WinNT.h" (Microsoft, n.d.-a). Using the 
latest Windows SDK, one can see this 
structure as shown below: 

typedef struct  
_PROCESS_MITIGATION_BINARY_SIGNATURE_
POLICY  
{  

union {  
DWORD Flags;  
struct {   
DWORD MicrosoftSignedOnly : 1; 
DWORD StoreSignedOnly : 1; 
DWORD MitigationOptIn : 1; 
DWORD ReservedFlags : 29;  



Preventing Reflective DLL Injection on UWP Apps 

45  OIC-CERT Journal of Cyber Security 

} 

DUMMYSTRU

CTNAME; } 

DUMMYUNIO

NNAME; 
}  
PROCESS_MITIGATION_BINARY_SIGNAT
URE_POLICY, 
*PPROCESS_MITIGATION_BINARY_SIGN
ATURE_POLICY; 

The flags specified in the structure enforce 
integrity restrictions.  MicrosoftSignedOnly 
can be set to prevent the process from loading 
images that are not signed by Microsoft.  
StoreSignedOnly can be set to prevent the 
process from loading images that are not 
signed by the Windows Store and finally 
MitigationOptIn can be set to prevent the 
process from loading images that are not 
signed by Microsoft, the Windows Store and 
the Windows Hardware Quality Labs 
(WHQL). 

All in all, the above integrity mechanism 
makes loading an unsigned DLL using 
LoadLibrary API impossible. Nevertheless, in 
the next section we review a number of recent 
techniques that allow intruders to circumvent 
this mitigation and load arbitrary DLLs into 
the memory of UWP apps even in the 
presence of an anti-virus. 

IV. HBCIAS ON UWP APPS 

One way to perform a host-based code 
injection attack is to put the code inside a 
DLL file and inject the DLL to the target 
process. This is called DLL injection.  A 
classic DLL injection attack in Windows 
operating system is usually carried out by the 
following steps [7]: 

i. Obtaining a handle to the victim 
process through calling OpenProcess 
API by setting the process’s ID as the 
input parameter of this API. 

ii. Allocating space inside the target 
process, by invoking VirtualAllocEx 
API. 

iii. Writing malicious DLL’s path into the 
allocated memory space, by using 
WriteProcessMemory API. 

iv. Obtaining a handle of Kernel32.dll 
module by calling GetModuleHandle 
API. 

v. Obtaining the address of LoadLibrary 
API through using GetProcAddress 
API, with Kernel32.dll’s handle and 
LoadLibrary’s name as the input 
parameters. 

vi. Calling LoadLibrary API by one of 
thread creating APIs like 
CreateRemoteThread, 
RtlCreateUserThread, and 
NtCreateThreadEx, by using handle 
of the target process, address of 
LoadLibrary API, and written 
memory address of the DLL path as 
input parameters to accomplish the 
attack. 

Due to the new code integrity security 
mechanism avail-able for UWP apps, it is 
possible to only allow signed DLLs to be 
loaded this way [22].  Thus, attackers must 
not be able to inject arbitrary DLLs on a target 
process that is being protected by the code 
integrity mechanism. 

However, Microsoft’s code integrity 
mechanism only triggers on the LoadLibrary 
API call, it is still possible to inject binary 
shellcodes into the target process as stated in 
[23].  However, working with shellcodes is 
very di cult and the attacker has to handle 
many complexities.  Hence, attackers are still 
looking for methods that de-spite the 
existence of Microsoft’s binary mitigation 
mechanism, inject their arbitrary DLLs to the 
memory of processes.  A little surfing of the 
security and hacking technical forums reveals 
that it is possible to use a tiny bootstrap shell-
code to perform a so-called Reflective DLL 
Injection [2][3] and load an arbitrary DLL 
into a target process without directly using the 
LoadLibrary API call.  However, the 
reflective DLL injection technique has been 
proposed for classic Windows applications 
and their use against UWP apps is not yet 
documented in academic papers or technical 
forums.  We confirmed that this technique 
works successfully against UWP apps too by 
injecting an arbitrary DLL into the Microsoft 
Edge browser’s memory.  The details for the 
reflective DLL injection attack elaborate in 
the next section. 

A. Reflective DLL Injection 

Assuming the attacker has code execution 
capability in the target process and the whole 
content of the library (s)he wishes to inject 
has been written into an arbitrary location of 



Preventing Reflective DLL Injection on UWP Apps 

46  OIC-CERT Journal of Cyber Security 

memory in the target process, Reflective DLL 
Injection [2][3] works as follows: 

i. Execution is passed via a tiny 
bootstrap shellcode to the library’s 
ReflectiveLoader function which is an 
exported function found in the 
library’s export table. 

ii. Since the library’s image currently 
exists in an arbitrary location in 
memory, the ReflectiveLoader first 
calculates its own image’s current 
location in memory so as to be able to 
parse its own headers for use later on. 

iii. The ReflectiveLoader will next parse 
the processes kernel32.dll export table 
in order to calculate the addresses of 
three functions required by the loader, 
namely Load-LibraryA, 
GetProcAddress and VirtualAlloc. 

iv. The ReflectiveLoader will then 
allocate a continuous region of 
memory into which it will proceed to 
load its own image.  The location is 
not important as the loader will 
correctly relocate the image later on. 

v. The library’s headers and sections are 
loaded into their new locations in 
memory. 

vi. The ReflectiveLoader will then 
process the newly loaded copy of its 
image’s import table, loading any 
additional library’s and resolving their 
respective imported function 
addresses. 

vii. The ReflectiveLoader will then 
process the newly loaded copy of its 
image’s relocation table. 

viii. The ReflectiveLoader will then call its 
newly loaded image’s entry point 
function, DllMain with 
DLL_PROCESS_ATTACH. The 
library has now been successfully 
loaded into memory. 

ix. Finally, the ReflectiveLoader will 
return execution to the initial 
bootstrap shellcode which called it. 

Since the technique doesn’t need a direct 
call to LoadLibrary, the security mechanism 
embedded in UWP apps is not able to prevent 
loading of the DLL. In the next section, we 
propose our mitigation mechanism to prevent 
this type of attack. 

V. THE PROPOSED DEFENSE 

In section 4, we discussed that despite the 
embedded mechanism in UWP framework 
against code injection at-tacks [22], it is still 
possible to bypass protection and inject 
arbitrary DLLs in UWP apps.  We explained 
that the reflective DLL injection can be used 
to inject a DLL into UWP apps (e.g. 
Microsoft Edge browser) without direct call to 
the Loadlibrary API.  In this section we 
propose a technique for defending against 
code injection attacks in UWP apps.  The 
general idea for the defence is to precisely 
monitor an API call that is commonly used in 
reflective DLL injection attacks.  More 
specifically, our idea is to monitor the input 
parameters to NtWriteVirtualMemory() API, 
which is used to write into the memory of a 
target process, and only allow valid 
parameters to get into. 

To implement this, we use a hooking 
library to build a hooking DLL that hooks into 
all user-mode processes by means of a 
system-wide Kernel-mode injection driver. 
Since Microsoft strictly forbids patching or 
hooking in the driver land, we implemented 
the hooking in user-level, and made it system-
wide by a driver that does the DLL injection 
in the kernel-level. 

A. Preliminaries 

Before presenting the proposed defence 
mechanism, we should first discuss some 
preliminaries about the underlying Windows 
internals that are used to build our mitigation 
engine. 

User-Mode API Hooking is a technique by 
which developers can instrument and modify 
the behavior of API calls, for different 
purposes like monitoring programs’ behavior, 
forcing them to function in a different way, 
etc.  Hooks are widely used by anti-viruses, 
security applications, system utilities, 
programming tools, and so on.  There are 
multiple hooking libraries such as Microsoft 
Detours [24], Mhook [25], Deviare [26], 
EasyHook [27], and others that can provide 
the user mode hooking capabilities. Their 
typical function is as follows: 

i. Storing beginning bytes of the 
original code of the tar-get function 
somewhere else.  It is needed for the 
correct behavior of the hooked 
function. 



Preventing Reflective DLL Injection on UWP Apps 

47  OIC-CERT Journal of Cyber Security 

ii. Overwriting the beginning bytes of 
the target function with a custom code 
(called trampoline).  So, when the 
function executes, it jumps to the 
hook handler. 

iii. If needed, calling the stored original 
target function, at the end of the hook 
handler. 

In this paper, we use Mhook [25] which is 
an open-source library and supports API 
hooking in both 32- and 64-bit programs. 
Microsoft also has introduced kernel-mode 
callbacks with Windows Vista.  These 
callbacks are registered in kernel mode and 
provide notifications to the registrar upon a 
certain event (e.g. if you register a callback 
for a specific activity then you can have your 
callback function invoked before/after the 
action has occurred on the system).  Three 
important callbacks for AV products are 
triggered for Create Process, Create Thread, 
and Load Image events.  These callbacks are 
registered by invoking: 

i. PsSetCreateProcessNotifyRoutine 
ii. PsSetCreateThreadNotifyRoutine, 

and  
iii. PsSetLoadImageNotifyRoutine.  

Our proposed mitigation mechanism which 
is written in a hooking DLL is deployed 
system-wide using the kernel-level injection 
in a LoadImage callback routine. 

B. The Mitigation Engine 

In this section we explain the proposed 
technique that mitigates the code injection 
attacks by monitoring the calls to 
NtWriteVirtualMemory API. Figures 1 and 2 
depict reflective versus normal DLL 
injections while our proposed defence 
mechanism in action.  Our proposed 
mechanism consists three main steps: 

Determining if the Binary Mitigation is 
enforced in the target process:  The proposed 
countermeasure aims to prevent the malware 
from circumventing the binary mitigation 
mechanism.  In fact, we want to tighten up the 
mitigation currently enforced in UWP apps, 
and consequently the proposed mechanism 
should only be activated for UWP binaries 
that are already protected by Windows 
mitigation policy.  In other words, if the 
binary mitigation is not active, the attacker 

can use the LoadLibrary API directly to load 
its malicious DLL in to the target process. 

 
Figure 1:  Proposed defence in action while a malicious 

reflective DLL Injection is being launched 

For this purpose, we check the Signed Only 
flags in PROCESS_MITIGATION_ 
BINARY_SIGNATURE_POLICY structure 
to find if the target app is forced to load only 
signed DLLs.  This information is provided by 
"WinNT.h" in the Windows SDK version 
10.0.14393.0, and can be accessed by calling 
GetProcessMitigationPolicy() API with 
ProcessSignaturePolicy type, and 
ProcessHandle structure passed to 
NtWriteVirtualMemory API, as inputs.  This 
way, the mechanism neglects the injections to 
other windows applications, just like the way 
the Windows 10 itself does. 

Detecting inter-process writes.  It’s possible 
for applications to write into their own 
address space using NtWriteVirtualMemmory 
API call, which is apparently a non-malicious 
act.  Therefore, we consider these intra-
process writes as safe injections and continue 
to check whether we detect a 
NtWriteVirtualMemory call in which the 
process IDs of the caller and the target process 
are different.  Since the 
NtWriteVirtualMemory API is invoked in the 
source process, the hook function is also 
executed in the con-text of this process and 
we can get the process ID of this process by 
calling GetCurrentProcessId API.  The 
process ID of the target process can also be 
obtained from the ProcessHandle structure 
passed into the NtWriteVirtualMemory API. 
The GetProcessId(ProcessHandle) can obtain 
this data for us.  If these two process IDs are 
equal, we consider it as a legitimate intra-
process injection, and call the original 
NtWrite-VirtualMemory API without any 
modification.  Otherwise we go to the next 
step for further checking. 



Preventing Reflective DLL Injection on UWP Apps 

48  OIC-CERT Journal of Cyber Security 

 
Figure 2:  Proposed defence in action while a benign 

normal DLL Injection is being launched 

Preventing the call if the input includes a 
DLL.  The main difference between the 
reflective injection and normal DLL injection 
is that instead of writing the path of the 
desired DLL, it directly writes the DLL 
content into the target process memory, and 
consequently makes it possible to circumvent 
the Microsoft Mitigation Policy.  So, we can 
utilize this fact, and prevent the write 
operation if the writing content contains a 
DLL.  To check this please note that all 
Windows executables begin with a MS-DOS 
executable stub.  So, we first check if a MS-
DOS program header exists at the beginning 
of the injected data.  We then check for 
markers for a Windows executable.  If we 
learned that the writing content is a Windows 
executable, we look for information that 
deter-mines whether the file is an application 
or is a DLL.  So, we check the following 
conditions respectively: 

i. We check the first bytes of data for a 
valid DOS header.  To do this we 
check the DOS header size field 
which should be 64 bytes at 
minimum. 

ii. All DOS program files (and therefore 
Windows executables) begin with a 
magic number; the word value $5A4D 
("MZ" in ASCII).  So, we check if 
e_magic field of DOS header is equal 
to $5A4D. 

iii. The Windows NT header begins with 
a magic number word whose value 

indicates whether this is a NE3 format 
or PE4 format executable or a virtual 
device driver with LE5 format.  The 
word is $454E ("NE" in ASCII), 
$4550 ("PE") or $454C ("LE"). So, 
we check if the Signature field of NT 
header is equal to $4550. 

iv. Windows executables have a file 
header immediately following the 
$4550 magic number.  This header 
structure has a Characteristics field 
which is a bit mask.  If the bit mask 
contains the flag IMAGE_FILE_DLL 
then the file is a DLL, otherwise it is a 
program file. 

Figure 3 illustrates the important structures 
in "WinNT.h" header file of Windows Kits 
version 10, considered in the pro-posed 
mitigation.  If all the conditions are met, the 
mitigation engine considers the API call as 
malicious, aborts the call, and raises an alarm. 

 
Figure 3:  Structures in a Windows executable file 

Since benign injections can be done in the 
normal way by writing only the path of the 
DLL into target process, there is no need to 
write the executable content directly, so the 
mitigation has no side effects on these benign 
injections. 

C. System-Wide DLL Injection 

We need a mechanism to load our 
mitigation engine DLL into all running 
processes upon their execution.  To do this we 
have taken advantage of a system-wide DLL 
loading technique.  A common method for 
system-wide DLL loading is the 
AppInit_DLLs infrastructure [9].  This 
mechanism loads an arbitrary list of DLLs in 
user-mode processes immediately after 
loading User32 DLL.  However, it is not 



Preventing Reflective DLL Injection on UWP Apps 

49  OIC-CERT Journal of Cyber Security 

enough as it does not load the DLLs in 
processes that don’t load User32.dll.  Like 
modern anti-virus products, we have written a 
kernel driver to implement an AppInit_DLLs-
like infrastructure that loads our mitigation 
DLL immediately after loading Ntdll module 
instead of User32.  This way, we will be 
ensured that the DLL is loaded in all windows 
processes, and the Mitigation is enforced 
system-wide.  As mentioned earlier, the 
PsSetLoadImageNotifyRoutine is used to 
register a callback for Image Load events. 
This routine has the following signature: 

NTSTATUS PsSetLoadImageNotifyRoutine(  
_In_PLOAD_IMAGE_NOTIFY_ROUTINE 
NotifyRoutine  

); 

After setting this routine, whenever an 
Image Load event occurs our defined 
NotifyRoutine will be run with 
PUNICODE_STRING FullImageName, 
HANDLE Proces-sId, PIMAGE_INFO 
ImageInfo, and BOOLEAN Create as input 
parameters.  Our NotifyRoutine does the 
system-wide DLL injection in five steps: 

i. Check if the loading image is Ntdll. Ntdll 
is the first DLL that will be automatically 
loaded for every process on the system, 
and also contains the target API for 
hooking in our Mitigation DLL, the 
NtWriteVirtualMemory API. 

ii. Find the address of LdrLoadDll. Another 
reason to wait for Ntdll to be loaded is 
because we can parse the PE headers and 
find out the user mode address of 
LdrLoadDll.  As explained in section 4, 
in user mode DLL injection, the 
LoadLibrary API is used for DLL 
loading, which is part of Kernel32 DLL.  
This API finally calls LdrLoadDll after 
some initializations.  Thus, as we want to 
load our Mitigation DLL before loading 
Kernel32 DLL, we need to do the 
initialization in the callback routine and 
call the LdrLoadDll directly from Ntdll. 

iii. Prepare an assembly code to load the 
Mitigation DLL through LdrLoadDll call 
into target process.  Since we are 
working on x64 Windows, we need to 
write two different x64 and x86 
assembly codes, to call the LdrLoadDll 
with the name of the proper version of 
Mitigation DLL as input, into target 64- 
and 32-bit processes.  Also, two distinct 

versions of Mitigation DLL are placed in 
following directories: 

64 bit : [Win_Drive]:\Windows\System32 

32 bit : [Win_Drive]:\Windows\SysWOW64 

iv. Allocate memory into the target process 
and write the assembly code there.  
Since the callback is called in the con-
text of the target process, we can simply 
use NtCurrentPro-cess() to specify what 
process the memory will be allocated 
and written into. 

v. Prepare an APC6 to call the assembly 
code. APCs al-low user programs and 
system components to execute code in 
the context of a particular thread and, 
therefore, within the address space of a 
particular process.  One advantage of 
APC is that it runs the code in the 
context of an existing thread and does 
not need to create a new thread for its 
operations, so makes it suitable for the 
case of system wide injection, as we 
need to load our DLL into all processes 
with no impact on performance.  
Following steps are required to add the 
code in the Thread APC Queue: 

Find a thread in the target process  

KeInitializeApc 

KeInsertQueueApc 

Then, the Mitigation DLL will be loaded 
into the process when the APC runs the 
assembly code.  Finally, we have a 
mechanism like the AppInit_DLLs 
infrastructure that can load our Mitigation 
DLL in all processes immediately after 
loading the Ntdll.  Our implementation codes 
for Mitigation Engine and System Wide 
Injection Driver are available in Github [28]. 

VI. EVALUATION 

To evaluate the proposed mitigation and 
assess its efficiency, we first used PCMark 
benchmarking tool [29] to measure the impact 
of the new technique on the overall 
performance of the system.  PCMark is one of 
a series of Windows performance testing tools 
that are provided by the Futuremark.  It 
includes a variety of bench-mark tests 
reflecting the different ways people use their 
computers.  Each benchmark produces 
detailed results for gaining a deep 
understanding of performance during each 



Preventing Reflective DLL Injection on UWP Apps 

50  OIC-CERT Journal of Cyber Security 

individual workload.  The technical guide in 
[29] explains specific tests the tool conducts 
on systems, and the formulas it uses to 
produce the scores. 

We used a virtual machine with the 
following specifications in our experiments 
which is Windows 10 x64 Enterprise Build 
14393 as Operating System, Intel Xeon 
X5670 @ 2.93 GHz @ 2933 MHz as CPU, 1 
Core(s), 1 Logical Processor(s) and 8.00 GB 
Memory. 

We selected 5 common benchmarks and 
measured the system performance while our 
mitigation engine is on or off.  Based on the 
results provided in Table 1, the overall 
performance degradation is at most 0.59 
percent which is very small and negligible.  In 
fact, the mitigation DLL does not have 
significant influence on typical user activities 
like web browsing, text writing, video chat 
and others.  Since the technique only checks 
the NtWriteVirtualMemory API calls for 
inter-process writes into UWP apps and this 
event is not very common in ordinary usages 
of the system, it doesn’t have tangible impact 
on the system’s usual functionalities and 
performance. 

Next, we assess the proposed 
countermeasure’s impact on 
NtWriteVirtualMemory which the specific 
API is involved in the mitigation.  To do so, 
we called the API to write a 100 KB memory 
block into a target process for 10000 times 
and calculated the average time.  The detailed 
results are provided in Table 2.  Whenever a 
DLL is being written into an UWP process 
memory, the write operation will be aborted, 
and the user will be informed about the 
malicious activity, so the first row of the table 
is not a usual write operation and its overhead 
doesn’t have any impact on the system’s 
performance.  If the target of the write 
operation is a non-UWP process, the 
mitigation will be stopped in the first step, and 
based on the results of the second and fourth 
rows of the table, its overhead impact is 
around 4.6 percent.  However, if the writing 
content is not a DLL, and the target process is 
UWP, the mitigation mechanism will be 
stopped in the third step and will have an 
overhead around 6.5 %.  However, since it 
doesn’t occur commonly in the system, it 
doesn’t have a tangible impact on the system 
overall performance, as shown in Table 1. 

Finally, to assess the number of 
NtWriteVirtualMemory API calls during 
execution of common Windows programs, we 

took advantage of API Monitor program [30] 
to illustrate the fact that the 
NtWriteVirtualMemory API call is not 
frequently used in prevalent Windows pro-
grams.  API Monitor is a free monitoring tool 
that lets us monitor and control API calls 
made by applications and services.  We 
selected a set of Windows programs, and ran 
each program for five minutes, to check call 
frequency of NtWriteVirtualMemory API.  As 
illustrated in Table 3, call frequency of the 
API is at most 0.0002% in Google Chrome 
application. 

Table 1: Overall Performance Impact on System (Time-Based). 

Benchmark Normal Hooked Overhead % 
Web Browsing - 
JunglePin 0.373 s  0.375 s 0.54 

Web Browsing - 
Amazonia 0.141 s 0.141 s 0.0 

Writing 6.31 s 6.31 s 0.0 
Phone Editing v2 1.867 s 1.878 s 0.59 
Video Chat v2/Video 
Chat Encoding v2 704.7 ms 706.5 ms 0.26 

Table 2: Performance Impact on NtWriteVirtualMemory API. 

Content is 
DLL 

Target 
is UWP 

Normal 
ms 

Hooked 
ms 

Overhead 
% 

    0.0481  1.0270 2035.14 
    0.0482  0.0504 4.56 
    0.0480  0.0511  6.46 
    0.0481  0.0503  4.57 

Table 3: NtWriteVirtualMemory Call Frequency in Windows 
Programs 

Program NtWriteVirtualMemory 
Call 

Total Number of 
Call 

Vmware 
Workstation 1 2330721 
Telegram 0 2495273 
Twitter 0 1658813 
Spark Instant 
Messenger 0 5255403 
Notpad++ 0 1317342 
Windows Media 
Player 1 12404209 
VLC Media Player 0 11506828 
TeamViewer 0 6176240 
Mozilla Firefox 0 15501030 
Google Chrome 23 10272584 
Microsoft Edge 0 2464095 
Wireshark Network 
Analyzer 5 2843753 
Internet Download 
Manager 0 4944558 



Preventing Reflective DLL Injection on UWP Apps 

51  OIC-CERT Journal of Cyber Security 

VII. CONCLUSION 

In this paper, we studied the issue of 
reflective DLL injection attacks on UWP apps 
and proposed a defence mechanism to counter 
such attacks.  We discovered that despite the 
embedded security mechanism in UWP 
framework, it is still possible to inject 
malicious/unsigned DLLs into UWP apps 
even in the presence of an antivirus software.  
To defend against these attacks, we proposed 
a mechanism that monitors the input 
parameters to NtWriteVirtualMemory() API 
and aborts malicious DLL injection attacks.  
We implemented the proposed idea by 
leveraging the hooking libraries and Windows 
kernel callbacks.  This allows us to monitor 
the processes and prevent malicious injections 
into UWP apps while allowing the benign 
injections to proceed as normal. 

VIII. REFERENCES 

[1] Barabosch, T., Eschweiler, S., & Gerhards-
Padilla, E. (2014). Bee master: Detecting host-
based code injection attacks [Conference 
Proceedings]. In International conference on 
detection of intrusions and malware, and 
vulnerability assessment (p. 235-254). 
Springer. 

[2]  Fewer, S. (2008). Reflective DLL injection 
[Journal Article]. Harmony Security, Version, 
1. 

[3] Staples, D. (2015). Improved reflective 
DLLinjection [Web Page]. 
https://github.com/dismantl/ImprovedReflecti
veDLLInjection. 

[4] Mertsarica. (2010). Antimeter tool [Web 
Page].https://www.mertsarica.com/antimeter-
tool/. 

[5] King, A. (2012). Detecting reflective injection 
[Web Page]. 
https://www.defcon.org/html/defcon-20/dc-20 
-speakers.html#King. DEF CON R 20 
Hacking Conference. 

[6] Berdajs, J., & Bosnic,´ Z. (2010). Extending 
applications using an advanced approach to 
DLL injection and API hooking [Journal 
Article]. Software: Practice and Experience, 
40(7), 567-584. 

[7] Richter, J. (1994). Load your 32 bit DLL into 
another process’s address space using injlib 
[Journal Article]. Microsoft Systems Journal-
US Edition, 13-40. 

[8] Lam, L.-c., Yu, Y., & Chiueh, T.-c. (2006). 
Secure mobile code execution service. In 
Proceedings of the 20th conference on large 
installation system administration (pp. 5–5). 

[9] Help, M., & Support. (2010). Working with 
the appinit DLLs registry value [Web Page]. 
https://support.microsoft.com/en/us/help/1975
71/working-with-the-appinit-dlls -registry-
value. 

[10] Kuster, R. (2003). Three ways to inject your 
code into another process [Web Page]. 
https://www.codeproject.com/ 
Articles/4610/Three-Ways-to-Inject-Your-
Code -into-Another-Process 

[11] Newcomer, J. M. (2001). Hooks and DLLs 
[Web Page]. 
https://www.codeproject.com/Articles/1037/ 
Hooks-and-DLLs. 

[12] Shewmaker, J. (2010). Analyzing DLL 
injection [Web Page]. 
http://www.bluenotch.com/. 

[13] NTCore. (2012). Explorer suite [Web Page]. 
www.ntcore.com/ exsuite.php. 

[14] Barabosch, T., & Gerhards-Padilla, E. (2014). 
Host-based code injection attacks: A popular 
technique used by malware [Conference 
Proceedings]. In Malicious and unwanted 
software: The americas (malware), 2014 9th 
international conference on (p. 8-17). IEEE. 

[15] Jang, M., Kim, H., & Yun, Y. (2007). 
Detection of DLL inserted by windows 
malicious code [Conference Proceedings]. In 
Convergence information technology, 2007. 
international conference on (p. 1059-1064). 
IEEE. 

[16] Glendowne, D., Miller, C., McGrew, W., & 
Dampier, D. (2015). Characteristics of 
malicious DLLs in windows memory 
[Conference Proceedings]. In Ifip international 
conference on digital forensics (p. 149-161). 
Springer. 

[17] VoxelBlock. (2016). Basic and intermediate 
techniques of uwp app modding [Web Page]. 
https://www.unknowncheats.me/ 
forum/general-programming-and-
reversing/177183-basic intermediate-
techniques-uwp-app-modding.html. 

[18] Yucheng, G., Peng, W., Juwei, L., & 
Qingping, G. (2011). A way to detect 
computer trojan based on DLL preemptive 
injection [Conference Proceedings]. In 
Distributed computing and applications to 
business, engineering and science (dcabes), 
2011 

[19] Sun, H.-M., Tseng, Y.-T., Lin, Y.-H., & 
Chiang, T. (2006). Detecting the code 
injection by hooking system calls in windows 
kernel mode [Conference Proceedings]. In 
2006 international computer symposium, ics. 

[20] DLL [Web Page]. http://www.codeguru.com/ 
cpp/g-m/directx/directx8/article.php/c11453/ 

http://www.bluenotch.com/


Preventing Reflective DLL Injection on UWP Apps 

52  OIC-CERT Journal of Cyber Security 

Intercept-Calls-to-DirectX-with-a-Proxy-
DLL.htm. 

[21] Microsoft.  (n.d.-a).  Process mitigation binary 
signature policy structure [Web Page].    
https://msdn.microsoft.com/en-
us/library/windows/desktop/mt706242(v=vs.8
5).aspx 

[22] Cowan, C. (2015). Protecting microsoft edge 
against binary injection [Web Page]. 
https://blogs.windows.com/msedgedev/2015/1
1/17/microsoft-edge-module-code -integrity/. 

[23] Rascagneres, P. (2016). Microsoft edge binary 
injection mitigation overview [Web Page]. 
http://www.sekoia.fr/blog/microsoft-edge-
binary-injection-mitigation -overview/. 

[24] Microsoft. (2002). Detours [Web Page]. 
https://www.microsoft.com/enus/research/proj
ect/detours/.  

[25] Mhook, an API hooking library [Web Page]. 
(2014). https:// github.com/martona/mhook. 

[26] Deviare API hook [Web Page]. (2017). 
http://www.nektra.com/products/deviare-api-
hook-windows/. 

[27] Easyhook the reinvention of windows API 
hooking [Web Page]. (2017). 
https://easyhook.github.io/. 

[28] Zaheri, M., & Niksefat, S. (2017). Github 
project for preventing reflective DLL injection 
on UWP apps [Web Page]. https:// 
github.com/m0jt4b4/UWPHardening. 

[29] FutureMark. (2016a). Pcmark 8: The 
complete benchmark for windows [Web 
Page]. http://www.futuremark.com/ 
benchmarks/pcmark. 

[30] rohitab.com. (2017). APIMonitor: Spy on API 
calls and COM inter-faces [Web Page]. 
http://www.rohitab.com/apimonitor. 

http://www.nektra.com/products/deviare-api-hook-windows/
http://www.nektra.com/products/deviare-api-hook-windows/
https://easyhook.github.io/



