
OIC-CERT Journal of Cyber Security
Volume 4, Issue 1 (April 2022)

97 - 110

97 ISSN 2636-9680
 eISSN 2682-9266

Building A Dynamic Cloud-Based Snort NIDS: A Journey
of “Mata Garuda” Network Intrusion Monitoring

Development in Indonesia

Ferry Astika S.1, Fadhil Yori2, Ikbar Maulana3, Dimas R4, Ahmada Y5,
M. Alfiyan6, Andri S7, Novi Turniawati8, Dani Ramdani9, Taufik Y10,

Muhammad Salman11, Kalamullah Ramli12, Jauhari13,Isbat14, Iwan
Syarif15

1,11,12Electrical Engineering, Universitas Indonesia, Depok, Indonesia
2,3,4,5,6,13,14,15 Politeknik Elektronika Negeri Surabaya, Indonesia

7,8,9,10 Balai Jaringan Informasi Informasi dan Komunikasi, Badan Pengkajian
dan Penerapan Teknologi, Jakarta, Indonesia

{1ferry.astika, 10muhammad.salman, 11kalamullah.ramli}@ui.ac.id,
{2fadhilyori,3ikbarmaulana77,4dimasrizkyhp,5ahmadayusril,6alfiyan}@it.st

udent.pens.ac.id
{7andri.saputra,8novi.turniawati,9dani.ramdani,

10taufik.yuniantoro}@bppt.go.id

ARTICLE INFO ABSTRACT

Article History
Received 8 Feb 2022
Received in revised form
12 Apr 2022
Accepted 15 Apr 2022

 Abstract—Snort is one of the well-known
signature-based network intrusion detection
system (NIDS). In the typical NIDS
architecture, the sensor placement must be
in the same physical network and the
defence centre that makes the deployment
cost steep. The increasing number of sensor
instances, followed by a rapid increase in log
data volume, caused the existing system to
face big data challenges. Snort must have an
efficient mechanism to collect, store, and
aggregate data to address this problem. In
this research, we want to fulfil the demands
faced by Snort. We propose a new analysis
framework for Snort NIDS on cloud and big
data technology. Using our proposed
framework, we can reduce deployment costs
of NIDS, which run on big data
environments. It contains Docker as the
sensor's platform, Apache Kafka as the
distributed messaging system, Apache Spark
as the distributed processing engine, and

Keywords:
Keywords-component;
snort; big data; cloud-
based IDS; lambda
architecture

OIC-CERT Journal of Cybersecurity
Volume 4, Issue 1 (April 2022)

 ISSN 2636-9680 98
eISSN 2682-9266

Apache Cassandra as the core databases.
Experiments are conducted to measure
sensor deployment and aggregation speed
and efficiency and data processing
performance efficiency. As a result, our
proposed framework requires a shorter
deployment time of the Snort sensor and a
lower system deployment cost. The data
storing and aggregation are faster and more
efficient than the typical architecture of
Snort NIDS.

I. INTRODUCTION

Snort is one of the commonly

used signature-based NIDS[1]. We
can find various implementations of
Snort in many network security
systems. Typically, users install the
Snort sensors to detect intrusion in
their networks. Then the set of
sensors send the log data to a
dedicated defence centre (DC). DC
is responsible for processing and
aggregating the data. The physical
placement of sensors and defence
centre must be on the same local
network in the typical architecture.
With the typical architecture,
installing sensors at a distant DC
location without re-deploying
another defence centre is
impossible. The placement of
sensors and a defence centre must
be in the same local network.

One of Snort NIDS's best

practices was on Mata Garuda
Project under the Indonesia Security
Incident Response Team on Internet
Infrastructure/Coordination Center
(IDSIRTII/CC)[2]. In 2014,
IDSIRTII/CC installed Snort-based
NIDS sensors on twelve ISP routers

that handle most Indonesia Internet
traffics. Intrusion detection and data
aggregation Sensors and the DC are
located in the same networks. The
sensor has two interfaces, one for
sniffing the packet, and the other
interface sends the intrusion logs to
DC through a secure file transfer
protocol every minute. Then in DC,
we aggregate the data in various
time units, enriching the data with
IP geolocation for building attack
maps and other security-related
analyses.

On the other side, emerging

cloud technology has become more
prevalent in society. Monitored
servers and networks by an
administrator can be anywhere. In
this situation, we cannot use the
typical architecture of NIDS as
figured by Mata Garuda. The
dynamic change in cloud-based
architecture requires ubiquitous
sensor placement and lightweight
sensor deployment and provides the
best data transport from DC agents
as reliable. Moreover, cloud
technology usage causes a
significant increase in data volume
on the defence centre side. With the

OIC-CERT Journal of Cyber Security
Volume 4, Issue 1 (April 2022)

99 ISSN 2636-9680
 eISSN 2682-9266

rise in the volume, velocity, and
variety of data that must be
processed, the defence centre
certainly needs a big data platform
to overcome it [3], [4],[5].
Our method aims twofold in this
paper:

• We propose a novel scheme to

implement Snort-based NIDS
for the cloud against intrusion by
using docker container
technologies and IoT
architecture.

• We describe the components,
architecture, and components of
the proposed design in detail.

• We propose a new design for the
defence centre to handle massive
data from a set of sensors over
the clouds by using the
advantages of big data
technologies.

This paper has been structured as

follows: Section II reviews related
works in NIDS technology in a real
network and implements big data
technology for NIDS. We describe
our proposed design in Section III to
build dynamic and scalable parallel
Cloud-Based Snort NIDS using
containers and big data.

II. RELATED WORKS

Back to 2014 when the
IDSIRTII/CC developed a Snort
based NIDS to monitor network
intrusion over leading ISPs in
Indonesia. The system consists of
twelve Snort NIDS. Each Snort
NIDS, namely a sensor. It sniffs the

traffic from ISP's router. The sensor
detects and logs the intrusion based
on its previously configured rules.
Then the sensors send their logs to
DC through a secure file transfer
protocol every minute. The DC
aggregates the logs according to the
time unit from minute to year. It
maps each record's IP source and
destination to their location through
IP2Maps DB. Figure 1 shows the
topology of Mata Garuda
implemented at IDSIRTII/CC.

Fig. 1. The topology of Mata Garuda, Indonesia
intrusion detection system based on Snort NIDS

at IDSIRTII/CC.

In early 2015, When

implementing Mata Garuda in a real
gigabit network, we found that our
system can only efficiently handle
4-5 million data per query. As the
data grow exponentially, the data
table also expands in its size. Many
join queries over several large tables
cause Mata Garuda to run slowly.
Another problem is that the
topology used still uses only one
OLTP database server, so the server
load is high. We propose a solution
using a partition table design as a
database design for Mata Garuda.
The result is that the computation
time is much faster and improves
Mata Garuda's performance in
handling extensive data[6].

In early 2020, the rapid change
of Internet technology with cloud

OIC-CERT Journal of Cybersecurity
Volume 4, Issue 1 (April 2022)

 ISSN 2636-9680 100
eISSN 2682-9266

computing and big data technology
in Indonesia challenged us to
develop a new version of Mata
Garuda. The improved version of
Mata Garuda must be compatible
with cloud technology. Besides that
challenge, along with the increasing
number of sensor instances
followed by a rapid increase in log
data volume, caused the existing
system to face big data challenges.
Based on our study in [7] and [8],
we successfully process (ETL and
data enrichment) snort log files
using the Big Data principle and
data mining in the Mata Garuda
application. The data mining
method is carried out on geolocation
data to get the attack's location with
our proposed distributed system.
We used the SQL-UDTF (User
Defined Table Generating
Function) feature in Hadoop to
perform and compare them with
join queries. The algorithm applied
in the mining process is k-means
clustering to obtain clusters from
GeoIP attacks. As a result, UDTF
can reduce the computation time to
0.08 seconds, which initially took
3561 seconds using join queries.
Figure 2 shows the architecture of
an improved version of Mata
Garuda implementing big data
technology.

Fig. 2. The improved version of Mata Garuda
implementing big data technology.

Conceptually similar work,

utilizing a similar method, was
proposed by [9], [10], and [11]. In
this literature, the researchers have
extensively investigated big data
technology implementation to
improve NIDS performance. They
used offline well-known IDS
datasets to conducts the
experiments. The data set is divided
into two parts: the training data set
and the testing dataset. They use the
training dataset processed by
various machine learning
algorithms implemented in the big
data environment to create a model.
Then the model is used as the rule of

OIC-CERT Journal of Cyber Security
Volume 4, Issue 1 (April 2022)

101 ISSN 2636-9680
 eISSN 2682-9266

the detection engine to detect
intrusions. Then they stream the
testing data to the detection engine
and measure the performance by
using the accuracy, precision, and
various machine learning evaluation
metrics.

More realistic implementation of

big data in the NIDS system is
introduced by BigFlow [12]. The
BigFlow system consists of five
main parts: monitored agents,
message middleware, stream
processing parts, stream learning
parts, and analytics. The agent sends
the network event to the messaging
middleware, which acts as a broker
of events. The event then streamed
to the stream processing line to
extract 158 features from its
bidirectional network flow. The
stream learning module processes
the features from the captured flow
in 15 seconds time window to create
an initial classification model.
Moreover, the stream learning
module provides reliable
classifications, employing a
Verification module; at the same
time, it provides updated ML
models. Regarding the authors,
BigFlow can maintain high
accuracy over a network traffic
dataset spanning a full year.

Most of the current evidence

supports multi-agents, messaging
middleware, big data, and machine
learning methods in NIDS. It means
the complexity of the entire NIDS
increase. The complexity means
difficulties in arranging different
parts connected in a complicated

way while keeping the system
configuration and maintenance as
simple as possible.

Unfortunately, there may not be

sufficient relevant literature for
using Snort as the core of the
distributed agents in the cloud and
big data environment. This section
briefly discusses the
containerization technology in IDS
for deploying Snort NIDS sensors,
selecting the suitable message
middleware system to provide low
latency in data transmission, the
Hadoop platform, and the lambda
architecture design building real-
time processing.

A. The docker containerization

technology

Docker is an open-source
platform used by development
teams to effectively build, run, and
distribute applications built together
[13]. Docker technology consists of
two elements, namely the Docker
Engine and the Docker hub. The
Docker engine is a portable
software packaging tool with a
lightweight system through a
particular library, namely
libcontainer (see figure 3). Using
this library, Docker can
manipulate namespaces, control
groups, SELinux policies, network
interfaces, and firewall rules. This
feature allows independent
containers to run within a single
instance, so the overhead of starting
virtual machines can be avoided.
The second part is the Docker Hub.
It is a Docker application sharing on
a cloud service, including its

OIC-CERT Journal of Cybersecurity
Volume 4, Issue 1 (April 2022)

 ISSN 2636-9680 102
eISSN 2682-9266

workflow automation. Creating new
containers is easy. So, it enables us
to serve the rapid iteration of
applications and provide
transparency for application
updates.

Moreover, using Docker, we can

reduce the development phase,
testing, and production time. These
advantages lead us to build our
Snort-based IDS sensor based on
Docker technology[14]. We can
build the Snort-based NIDS and its
dependencies into one docker
image. The users can download this
pre-configured sensor application
without any further configuration,
as simple as issuing the Command-
Line Interface (CLI) "docker run."
(see figure 4)

Fig. 3. Docker uses libcontainer to access the
Linux Kernel.

Fig. 4. A process for creating a new docker
container of the sensor (Snort based NIDS with

pre-configured web rules)

B. The messaging middleware
system

Messaging middleware offers a

hub and spoke architecture that
serves as a central point of
communication between all
applications. It controls the
transport method, the rule, and the
data reformatting for ensuring the
data arrives at the receiving
application precisely. For example,
when data are sent by one
application (publisher), they can be
stored in a queue and then
forwarded to the receiving
application (subscriber) whenever it
becomes available to process.
Commonly, the messaging
middleware system is implemented
in IoT architecture. Most IoT
projects combine MQTT and Kafka
for performance and scalability
reasons. The high-level architecture
is shown in figure 5.

MQTT Broker receives data

from sensors (as publisher) by using
MQTT protocols. It sends to
Apache Kafka Broker through the
MQTT connector. The Kafka
Producer is an application that
publishes data to a Kafka cluster
made up of Kafka brokers. The
Kafka Broker will be responsible
for receiving and storing the data

OIC-CERT Journal of Cyber Security
Volume 4, Issue 1 (April 2022)

103 ISSN 2636-9680
 eISSN 2682-9266

when a producer publishes, namely
the recent data from MQTT Broker.
Then, the Kafka Consumer
consumes data from Kafka broker at
a specified offset, i.e., timestamps,
position. Each consumer can do a
specific task, i.e., write the
messages to a Hadoop or stream the
Spark engine's data. A basic unit of
data in Kafka is called a message. It
contains the data and its metadata,
i.e., timestamps, type of data
compression. These messages are
organized into logical groupings
called topics, on which producers
publish data. Typically, messages in
a topic are distributed across
different partitions in different
Kafka brokers. A Kafka broker can
manage many partitions.

Fig. 5. The high-level architecture of a typical
IoT system by combining MQTT and Apache

Kafka. Confluent manages all elements in
MQTT and Apache Kafka.

C. The Hadoop platform and the

lambda architecture

Hadoop is an open-source
platform designed for storing and
processing an extensive amount of
data. It relies on distributed
hardware to store and process data,
enabling large processing amounts
of data on distributed clusters of
servers. The Hadoop consists of a
storage component, namely
Hadoop's Distributed File System
(HDFS), and a processing
component called MapReduce[15].
HDFS is a distributed storage file

system that is designed to run on
commodity hardware. An HDFS
cluster consists of NameNode(s)
that manage the file system
metadata and many DataNodes that
store data. A file is split into blocks,
and these blocks are stored in a set
of DataNodes. Each block has
several replications distributed in
different DataNodes. MapReduce is
the processing component in the
Hadoop platform. It mainly consists
of JobTracker as master nodes and
as slave nodes per cluster. The
JobTracker is responsible for
scheduling jobs for TaskTrackers,
monitoring them, and re-executing
the failed tasks. The MapReduce
and HDFS run on the same set of
nodes.

The Lambda architecture's basis

is to compute arbitrary functions on
distributed datasets in real-time and
combining batch and real-time
processing capabilities to balance
data latency throughput and fault
tolerance. However, there is no
optimal design that can accomplish
this task. Instead, several tools and
designs are used to build a complete
big data system. The Lambda
architecture addresses the problem
of arbitrary computing functions
parallel to distributed data in real-
time. It consists of a three-layered
architecture: batch, speed, and
serving layers (see figure 6).
1) The Batch Layer

It has two tasks. The first is to
store the continually growing
and immutable master data in a
distributed file system, a
Hadoop distributed file system

OIC-CERT Journal of Cybersecurity
Volume 4, Issue 1 (April 2022)

 ISSN 2636-9680 104
eISSN 2682-9266

(HDFS). The second task is to
precompute batch views for this
distributed data by using
MapReduce. Those batch views
can be used to reply to incoming
queries with low read latency.

2) The Speed Layer
Comparing to the batch layer, it
does not precompute the views
for the entire data. It also has
two tasks. The first is to
compute views for recently
incoming data from various
data sources. It is possible to
enrich the master data by
joining other related data
sources. The second task is to
store and update the recent
incoming data in real-time
because the older data is stored
in the batch layer.

3) The Serving Layer
The serving layer is a
specialized, distributed
database system. It indexes the
batch views so that they can be
queried in a low-latency and ad-
hoc manner. Then the serving
layer joins the batch layer
results and the speed layer
computations on the data. So, it
can provide real-time
computation results over the
entire data.

Fig. 6. The components of Lambda Architecture

III. PROPOSED APPROACH

A. Enterprise Layering & Lambda
Architecture

The detailed component of

Lambda Architecture used in this
proposed framework architecture,
as shown in Figure 7.

Sensors are Snort NIDS using

subscribed community rules. The
sensor can be placed anywhere over
the Internet as long there is internet
access to send the log to the DC.
MQTT client is installed inside the
sensor to send the alert data. The
sensor uses MQTT Protocol to
publish the alert data to the MQTT
Server located on the defence
centre.

MQTT Server, located in the

DC, acting as MQTT message
broker and equipped with a
connector to distribute data from
MQTT broker to Apache Kafka
Broker that is on the same network
as the defence centre. Bridging
process, connecting between
message inside MQTT Server and
Apache Kafka.

Apache Kafka with multi-

broker configuration is located in
the same network as the defence
centre. It streams the data to
Apache Spark Instances.

Data storing jobs to HDFS, the

data streamed from Apache Kafka
will be stored inside the HDFS
through Apache Spark. Stored data
is raw immutable data. We can
enrich the data with additional

OIC-CERT Journal of Cyber Security
Volume 4, Issue 1 (April 2022)

105 ISSN 2636-9680
 eISSN 2682-9266

attributes like local date-time,
geographic information, and
readable timestamp in this stage.

The data stored used inside the

HDFS for batch processing using
Apache Spark, that is, data
aggregation in minutely, hourly,
daily, weekly, monthly, and yearly.
The results stored as batch
processing in the form of JSON
files in HDFS. Our main reason to
reduce the network latency when
batch processing or aggregation
occurs.

Apache Spark used as structured

streaming to perform automatic
data aggregation sent by Apache
Kafka. The source of data used in
structured streaming is originated
directly from Apache Kafka.

The result of data aggregation is

stored in its respective aggregation
table. There are two states of data
results, temporary and permanent.
Permanent data results will be
stored inside the Cassandra table as
time-series data. In contrast, the
provisional data is published via
Apache Kafka.

Both data results from batch and
stream processing will be stored in
the Apache Cassandra database.
The result of all user queries and
also the batch processing are stored
in the Apache Cassandra.

Apache Cassandra, as the

central database that acts as a
permanent data storage and data
source for all related services.
Aggregated data is in the form of

time-series data. The frequency of
data retrieval and data write is
relatively high, so to reduce the
latency, Apache Cassandra is used
due to its ability to serve the query
using the clustered instance of the
database.

Batch metric services is a

collection of services that are
responsible for doing a query from
Apache Cassandra. Temporary data
as a result of the stream processing
will be published to Apache Kafka.
Each aggregation result will be
published on a different topic.

The temporary data will be

published on a different topic.
Apache Kafka is used as a message
broker based on its function to
provide real-time data. Due to the
high write rate of Apache Kafka, it
certainly makes the web services to
consume the data at low latency and
much more efficient needs of the
resource.

By Apache Kafka, stream

metrics will allow clients to get
real-time data with low latency
while still maintaining resource
efficiency. The application of
stream data can be in the form of a
live graph that gets updated
periodically.

Mongo DB is used to store the

set of user information, i.e., user ID,
organization ID, and sensor ID.
Service for preserving Users and
sensor management

Users can access all services

through the REST API gateway.

OIC-CERT Journal of Cybersecurity
Volume 4, Issue 1 (April 2022)

 ISSN 2636-9680 106
eISSN 2682-9266

REST API gateway is the only
gateway between the client and the
services. It also acts as the load
balancer for each instance of
service. Users can also access
existing services through the
provided gateway from their
devices.

Fig. 7. Details of our proposed framework that
implemented in Lambda Architecture

B. Metrics

Log data processing performed

in Apache Spark consists of
geographic information,
timestamp, and time zone
adjustments for sensors. These
sensors may be placed in different
locations and different time zones.
We use Unix Epoch as the format of
timestamp data sent by the sensor
Aggregation is done in per second,
per minute, per hour, per day, per
month, and per year window time.
The list of performed aggregations
are: the event hit on
company/device id, signature hit on
company/device id, protocol hit on
company/device id, protocol hit by
source/destination port on
company/device id, IP
source/destination hit on
company/device id, country

source/destination hit on
company/device id with each of the
metrics counted by granularity as
mentioned above.

IV. EXPERIMENT AND
DISCUSSION

A. Sensor Deployment Time

The experiment is carried away

to examine the time used to deploy
the sensor that builds on top of
Docker containers.

TABLE 1: Sensor deployment time.

Debian
Based
Image

Alpine
Based
Image

Build
Time 30 Minute 15 Minute

Image
Size 623 MB 562 MB

From TABLE 1, we found that
docker containers with Alpine as its
base images are able to deploy the
sensors two times faster than
Debian-based containers.

B. Selecting Message Delivery

In order to find the best method for
data transport between sensors with
a defence centre, our experiment is
as follows:
(1) The sensor generates 1000

messages/ second. Each
message has a size of 924 bytes.

(2) The method that is compared is
between MQTT and Apache
Kafka via the internet network.

OIC-CERT Journal of Cyber Security
Volume 4, Issue 1 (April 2022)

107 ISSN 2636-9680
 eISSN 2682-9266

TABLE 2: Performance comparison of
MQTT and Apache KAFKA

Msg
Rate:

Latency
MQTT

Msg
Rate:

Latency
With

Kafka
Pub

Message
(1000@924

Bytes)

210
msg/sec
: 340ms

17
msg/sec :

31819
ms

Average
Latency 543ms 33945ms

Our experiment shown in TABLE 2
found that MQTT has a higher rate
and lower latency than Apache
Kafka through the internet network.

C. Kafka Write Throughput
Data ingestion is the phase where
data sent through the sensor to the
data centre are collected in one
place to be distributed to the next
phase. Apache Kafka [16], [17] is
one of the ingestion data
frameworks that is reliable and has
high latency when it comes to data
ingestion. However, to be more
convincing in selecting Kafka as
data ingestion, the experiment will
be carried out with the following
specifications. The experiment will
be carried out by loading the test on
the single broker Kafka. Three
experiments will be conducted,

sending 50 million, 100 million,
and 150 million data
simultaneously. Then the average
message/sec throughput will be
calculated ".

TABLE 3: Load test on single Kafka Broker

We send up to 100 million data,

and brokers can still handle the
requests. However, when the
message reaches 150 million, it can
be seen that there is a significant
decrease in throughput rate,
indicating that it takes additional
new brokers to help handle
concurrently. We summarize our
load test in Table 3.

V. CONCLUSION

From our experiment can be
inferred that there is a significant
performance gap between MQTT
and Apache Kafka when it comes to
delivering data through the Internet.
The limited bandwidth possibly
causes this since data transportation
takes place through the Internet.
Meanwhile, Apache Kafka
outperformed MQTT in data
volume and ingestion speed at the
local network where data ingestion
mostly occurs.

Number of
Messages

(1 msg = 924
Bytes)

Message /
Second

Bytes /
Second

50.000.000 420.000 110 M

100.000.000 650.000 172 M

150.000.000 530.000 132 M

OIC-CERT Journal of Cybersecurity
Volume 4, Issue 1 (April 2022)

 ISSN 2636-9680 108
eISSN 2682-9266

Our proposed framework
architecture successfully handles
the computational load from the log
data that originated from many
sensors. The sensor built on top of
Docker has a lower deployment
time than the sensor's manual
deployment. MQTT protocol also
has better performance in sending
the sensor to the defence centre than
Apache Kafka due to its lightweight
traits that lower latency than
Apache Kafka through the Internet.
Although Apache Kafka is
excelled, MQTT can ingest many
data in the local network needed to
collect data from many sensors. We
share the installation manual and
source files of the Mata Elang at
https://github.com/mata-elang-
pens.

VI. REFERENCES
[1] “Snort - Network Intrusion

Detection & Prevention
System.” [Online]. Available:
https://www.snort.org/.
[Accessed: 10-Jan-2019].

[2] “Mata Garuda.” [Online].
Available:
https://matagaruda.idsirtii.or.id
/login. [Accessed: 21-Jan-
2021].

[3] W. Shi, J. Cao, Q. Zhang, Y.
Li, and L. Xu, "Edge
Computing: Vision and
Challenges," IEEE Internet
Things J., vol. 3, no. 5, pp.
637–646, Oct. 2016.

[4] Z. Chiba, N. Abghour, K.
Moussaid, A. El Omri, and M.
Rida, "A Cooperative and
Hybrid Network Intrusion
Detection Framework in
Cloud Computing Based on

Snort and Optimized Back
Propagation Neural Network,"
Procedia Comput. Sci., vol.
83, pp. 1200–1206, Jan. 2016.

[5] R. Zuech, T. M. Khoshgoftaar,
and R. Wald, "Intrusion
detection and Big
Heterogeneous Data: a
Survey," J. Big Data, vol. 2, p.
3, 2015.

[6] S. Irdoni, F. A. Saputra, and
A. S. Ahsan, “Optimizing The
Database of Mata Garuda by
Using Partition Table,”
Politeknik Elektronika Negeri
Surabaya, 2017.

[7] M. Hisyam, A. R. Barakbah, I.
Syarif, and F. A. S, "Spatio
Temporal with Scalable
Automatic Bisecting-Kmeans
for Network Security Analysis
in Matagaruda Project," Emit.
Int. J. Eng. Technol., vol. 7,
no. 1, pp. 83–104, Jun. 2019.

[8] M. Hisyam, F. A. Saputra, and
J. Akhmad, “A Study of
Implementing Data Mining
Using Hadoop and Mahout for
Mata Garuda Log Analysis,”
Politeknik Elektronika Negeri
Surabaya, 2015.

[9] S. M. Othman, F. Mutaher Ba-
Alwi, N. T. Alsohybe, and A.
Y. Al-Hashida, "Intrusion
detection model using
machine learning algorithm on
Big Data environment," J. Big
Data, vol. 5, no. 34, 2018.

[10] G. P. Gupta and M. Kulariya,
"A Framework for Fast and
Efficient Cyber Security
Network Intrusion Detection
Using Apache Spark," in
Procedia Computer Science,
2016, vol. 93, pp. 824–831.

[11] K. Peng, V. C. M. Leung, and
Q. Huang, "Clustering
Approach Based on Mini Batch
Kmeans for Intrusion Detection

OIC-CERT Journal of Cyber Security
Volume 4, Issue 1 (April 2022)

109 ISSN 2636-9680
 eISSN 2682-9266

System over Big Data," IEEE
Access, vol. 6, pp. 11897–
11906, 2018.

[12] E. Viegas, A. Santin, A.
Bessani, and N. Neves,
"BigFlow: Real-time and
reliable anomaly-based
intrusion detection for high-
speed networks," Futur.
Gener. Comput. Syst., vol. 93,
pp. 473–485, 2019.

[13] “Get Started with Docker |
Docker.” [Online]. Available:
https://www.docker.com/get-
started. [Accessed: 12-Jan-
2021].

[14] J. Xing et al., "AsIDPS: Auto-
Scaling Intrusion Detection
and Prevention System for
Cloud," in 2018 25th

International Conference on
Telecommunications, ICT
2018, 2018, pp. 207–212.

[15] N. Marz and J. Warren, Big
Data: Principles and Best
Practices of Scalable Realtime
Data Systems, 1st ed. Manning,
215AD.

[16] "Readings in information
visualization: using vision to
think." Morgan Kaufmann,
1999.

[17] F. Ullah and M. Ali Babar,
"The Journal of Systems and
Software Architectural Tactics
for Big Data Cybersecurity
Analytics Systems: A
Review," J. Syst. Softw., vol.
151, pp. 81–118, 2019.

OIC-CERT Journal of Cybersecurity
Volume 4, Issue 1 (April 2022)

 ISSN 2636-9680 110
eISSN 2682-9266

	I. Introduction
	II. Related Works
	III. Proposed Approach
	A. Enterprise Layering & Lambda Architecture
	B. Metrics

	IV. Experiment And Discussion
	A. Sensor Deployment Time
	B. Selecting Message Delivery
	C. Kafka Write Throughput

	V. Conclusion
	VI. REFERENCES

