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 Abstract—Snort is one of the well-known 
signature-based network intrusion detection 
system (NIDS). In the typical NIDS 
architecture, the sensor placement must be 
in the same physical network and the 
defence centre that makes the deployment 
cost steep. The increasing number of sensor 
instances, followed by a rapid increase in log 
data volume, caused the existing system to 
face big data challenges. Snort must have an 
efficient mechanism to collect, store, and 
aggregate data to address this problem. In 
this research, we want to fulfil the demands 
faced by Snort. We propose a new analysis 
framework for Snort NIDS on cloud and big 
data technology. Using our proposed 
framework, we can reduce deployment costs 
of NIDS, which run on big data 
environments.  It contains Docker as the 
sensor's platform, Apache Kafka as the 
distributed messaging system, Apache Spark 
as the distributed processing engine, and 

Keywords: 
Keywords-component; 
snort; big data; cloud-
based IDS; lambda 
architecture 

 



OIC-CERT Journal of Cybersecurity 
Volume 4, Issue 1 (April 2022) 

  ISSN 2636-9680  98 
eISSN 2682-9266 

Apache Cassandra as the core databases. 
Experiments are conducted to measure 
sensor deployment and aggregation speed 
and efficiency and data processing 
performance efficiency. As a result, our 
proposed framework requires a shorter 
deployment time of the Snort sensor and a 
lower system deployment cost. The data 
storing and aggregation are faster and more 
efficient than the typical architecture of 
Snort NIDS.  

 
 
I.  INTRODUCTION 

 
Snort is one of the commonly 

used signature-based NIDS[1]. We 
can find various implementations of 
Snort in many network security 
systems. Typically, users install the 
Snort sensors to detect intrusion in 
their networks. Then the set of 
sensors send the log data to a 
dedicated defence centre (DC). DC 
is responsible for processing and 
aggregating the data. The physical 
placement of sensors and defence 
centre must be on the same local 
network in the typical architecture. 
With the typical architecture, 
installing sensors at a distant DC 
location without re-deploying 
another defence centre is 
impossible. The placement of 
sensors and a defence centre must 
be in the same local network. 

 
One of  Snort NIDS's best 

practices was on Mata Garuda 
Project under the Indonesia Security 
Incident Response Team on Internet 
Infrastructure/Coordination Center 
(IDSIRTII/CC)[2]. In 2014, 
IDSIRTII/CC installed Snort-based 
NIDS sensors on twelve ISP routers 

that handle most Indonesia Internet 
traffics. Intrusion detection and data 
aggregation Sensors and the DC are 
located in the same networks. The 
sensor has two interfaces, one for 
sniffing the packet, and the other 
interface sends the intrusion logs to 
DC through a secure file transfer 
protocol every minute. Then in DC, 
we aggregate the data in various 
time units, enriching the data with 
IP geolocation for building attack 
maps and other security-related 
analyses. 

 
On the other side, emerging 

cloud technology has become more 
prevalent in society. Monitored 
servers and networks by an 
administrator can be anywhere. In 
this situation, we cannot use the 
typical architecture of NIDS as 
figured by Mata Garuda. The 
dynamic change in cloud-based 
architecture requires ubiquitous 
sensor placement and lightweight 
sensor deployment and provides the 
best data transport from DC agents 
as reliable. Moreover, cloud 
technology usage causes a 
significant increase in data volume 
on the defence centre side. With the 
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rise in the volume, velocity, and 
variety of data that must be 
processed, the defence centre 
certainly needs a big data platform 
to overcome it [3], [4],[5].  
Our method aims twofold in this 
paper:  
 
• We propose a novel scheme to 

implement Snort-based NIDS 
for the cloud against intrusion by 
using docker container 
technologies and IoT 
architecture. 

• We describe the components, 
architecture, and components of 
the proposed design in detail. 

• We propose a new design for the 
defence centre to handle massive 
data from a set of sensors over 
the clouds by using the 
advantages of big data 
technologies. 
 
This paper has been structured as 

follows: Section II reviews related 
works in NIDS technology in a real 
network and implements big data 
technology for NIDS. We describe 
our proposed design in Section III to 
build dynamic and scalable parallel 
Cloud-Based Snort NIDS using 
containers and big data.  

 
 

II. RELATED WORKS 
 

Back to 2014 when the 
IDSIRTII/CC developed a Snort 
based NIDS to monitor network 
intrusion over leading ISPs in 
Indonesia.  The system consists of 
twelve Snort NIDS. Each Snort 
NIDS, namely a sensor. It sniffs the 

traffic from ISP's router. The sensor 
detects and logs the intrusion based 
on its previously configured rules. 
Then the sensors send their logs to 
DC through a secure file transfer 
protocol every minute. The DC 
aggregates the logs according to the 
time unit from minute to year. It 
maps each record's IP source and 
destination to their location through 
IP2Maps DB. Figure 1 shows the 
topology of Mata Garuda 
implemented at IDSIRTII/CC. 

 

 
 

Fig. 1. The topology of Mata Garuda, Indonesia 
intrusion detection system based on Snort NIDS 

at IDSIRTII/CC. 
 
In early 2015, When 

implementing Mata Garuda in a real 
gigabit network, we found that our 
system can only efficiently handle 
4-5 million data per query. As the 
data grow exponentially, the data 
table also expands in its size. Many 
join queries over several large tables 
cause Mata Garuda to run slowly. 
Another problem is that the 
topology used still uses only one 
OLTP database server, so the server 
load is high. We propose a solution 
using a partition table design as a 
database design for Mata Garuda. 
The result is that the computation 
time is much faster and improves 
Mata Garuda's performance in 
handling extensive data[6]. 
 

In early 2020, the rapid change 
of Internet technology with cloud 
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computing and big data technology 
in Indonesia challenged us to 
develop a new version of Mata 
Garuda. The improved version of 
Mata Garuda must be compatible 
with cloud technology. Besides that 
challenge, along with the increasing 
number of sensor instances 
followed by a rapid increase in log 
data volume, caused the existing 
system to face big data challenges. 
Based on our study in  [7] and [8], 
we successfully process (ETL and 
data enrichment) snort log files 
using the Big Data principle and 
data mining in the Mata Garuda 
application. The data mining 
method is carried out on geolocation 
data to get the attack's location with 
our proposed distributed system. 
We used the SQL-UDTF (User 
Defined Table Generating 
Function) feature in Hadoop to 
perform and compare them with 
join queries. The algorithm applied 
in the mining process is k-means 
clustering to obtain clusters from 
GeoIP attacks. As a result, UDTF 
can reduce the computation time to 
0.08 seconds, which initially took 
3561 seconds using join queries. 
Figure 2 shows the architecture of 
an improved version of Mata 
Garuda implementing big data 
technology. 

 
 

Fig. 2. The improved version of Mata Garuda 
implementing big data technology. 

 
Conceptually similar work, 

utilizing a similar method, was 
proposed by [9], [10], and [11]. In 
this literature, the researchers have 
extensively investigated big data 
technology implementation to 
improve NIDS performance. They 
used offline well-known IDS 
datasets to conducts the 
experiments. The data set is divided 
into two parts: the training data set 
and the testing dataset.  They use the 
training dataset processed by 
various machine learning 
algorithms implemented in the big 
data environment to create a model. 
Then the model is used as the rule of 
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the detection engine to detect 
intrusions. Then they stream the 
testing data to the detection engine 
and measure the performance by 
using the accuracy, precision, and 
various machine learning evaluation 
metrics.  

 
More realistic implementation of 

big data in the NIDS system is 
introduced by BigFlow [12]. The 
BigFlow system consists of five 
main parts: monitored agents, 
message middleware, stream 
processing parts, stream learning 
parts, and analytics. The agent sends 
the network event to the messaging 
middleware, which acts as a broker 
of events. The event then streamed 
to the stream processing line to 
extract 158 features from its 
bidirectional network flow. The 
stream learning module processes 
the features from the captured flow 
in 15 seconds time window to create 
an initial classification model. 
Moreover, the stream learning 
module provides reliable 
classifications, employing a 
Verification module; at the same 
time, it provides updated ML 
models. Regarding the authors, 
BigFlow can maintain high 
accuracy over a network traffic 
dataset spanning a full year. 

 
Most of the current evidence 

supports multi-agents, messaging 
middleware, big data, and machine 
learning methods in NIDS. It means 
the complexity of the entire NIDS 
increase. The complexity means 
difficulties in arranging different 
parts connected in a complicated 

way while keeping the system 
configuration and maintenance as 
simple as possible.  

 
Unfortunately, there may not be 

sufficient relevant literature for 
using Snort as the core of the 
distributed agents in the cloud and 
big data environment. This section 
briefly discusses the 
containerization technology in IDS 
for deploying Snort NIDS sensors, 
selecting the suitable message 
middleware system to provide low 
latency in data transmission, the 
Hadoop platform, and the lambda 
architecture design building real-
time processing.    

 
A. The docker containerization 

technology  
 

Docker is an open-source 
platform used by development 
teams to effectively build, run, and 
distribute applications built together 
[13]. Docker technology consists of 
two elements, namely the Docker 
Engine and the Docker hub. The 
Docker engine is a portable 
software packaging tool with a 
lightweight system through a 
particular library, namely 
libcontainer (see figure 3). Using 
this library, Docker can 
manipulate namespaces, control 
groups, SELinux policies, network 
interfaces, and firewall rules. This 
feature allows independent 
containers to run within a single 
instance, so the overhead of starting 
virtual machines can be avoided. 
The second part is the Docker Hub. 
It is a Docker application sharing on 
a cloud service, including its 
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workflow automation. Creating new 
containers is easy. So, it enables us 
to serve the rapid iteration of 
applications and provide 
transparency for application 
updates. 

 
Moreover, using Docker, we can 

reduce the development phase, 
testing, and production time. These 
advantages lead us to build our 
Snort-based IDS sensor based on 
Docker technology[14]. We can 
build the Snort-based NIDS and its 
dependencies into one docker 
image. The users can download this 
pre-configured sensor application 
without any further configuration, 
as simple as issuing the Command-
Line Interface (CLI) "docker run." 
(see figure 4) 

 

 
 

Fig. 3. Docker uses libcontainer to access the 
Linux Kernel.  

 
 
 
 

 
 

Fig. 4. A process for creating a new docker 
container of the sensor (Snort based NIDS with 

pre-configured web rules) 
 

B. The messaging middleware 
system  
 
Messaging middleware offers a 

hub and spoke architecture that 
serves as a central point of 
communication between all 
applications. It controls the 
transport method, the rule, and the 
data reformatting for ensuring the 
data arrives at the receiving 
application precisely.  For example, 
when data are sent by one 
application (publisher), they can be 
stored in a queue and then 
forwarded to the receiving 
application (subscriber) whenever it 
becomes available to process. 
Commonly, the messaging 
middleware system is implemented 
in IoT architecture. Most IoT 
projects combine MQTT and Kafka 
for performance and scalability 
reasons. The high-level architecture 
is shown in figure 5.  

 
MQTT Broker receives data 

from sensors (as publisher) by using 
MQTT protocols. It sends to 
Apache Kafka Broker through the 
MQTT connector.   The Kafka 
Producer is an application that 
publishes data to a Kafka cluster 
made up of Kafka brokers. The 
Kafka Broker will be responsible 
for receiving and storing the data 
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when a producer publishes, namely 
the recent data from MQTT Broker. 
Then, the Kafka Consumer 
consumes data from Kafka broker at 
a specified offset, i.e., timestamps, 
position. Each consumer can do a 
specific task, i.e., write the 
messages to a Hadoop or stream the 
Spark engine's data. A basic unit of 
data in Kafka is called a message. It 
contains the data and its metadata, 
i.e., timestamps, type of data 
compression. These messages are 
organized into logical groupings 
called topics, on which producers 
publish data. Typically, messages in 
a topic are distributed across 
different partitions in different 
Kafka brokers. A Kafka broker can 
manage many partitions.  

 

 
 

Fig. 5. The high-level architecture of a typical 
IoT system by combining MQTT and Apache 

Kafka. Confluent manages all elements in 
MQTT and Apache Kafka. 

 
C. The Hadoop platform and the 

lambda architecture 
 

Hadoop is an open-source 
platform designed for storing and 
processing an extensive amount of 
data. It relies on distributed 
hardware to store and process data, 
enabling large processing amounts 
of data on distributed clusters of 
servers. The Hadoop consists of a 
storage component, namely 
Hadoop's Distributed File System 
(HDFS), and a processing 
component called MapReduce[15]. 
HDFS is a distributed storage file 

system that is designed to run on 
commodity hardware. An HDFS 
cluster consists of NameNode(s) 
that manage the file system 
metadata and many DataNodes that 
store data. A file is split into blocks, 
and these blocks are stored in a set 
of DataNodes. Each block has 
several replications distributed in 
different DataNodes. MapReduce is 
the processing component in the 
Hadoop platform. It mainly consists 
of JobTracker as master nodes and 
as slave nodes per cluster. The 
JobTracker is responsible for 
scheduling jobs for TaskTrackers, 
monitoring them, and re-executing 
the failed tasks. The MapReduce 
and HDFS run on the same set of 
nodes. 

 
The Lambda architecture's basis 

is to compute arbitrary functions on 
distributed datasets in real-time and 
combining batch and real-time 
processing capabilities to balance 
data latency throughput and fault 
tolerance. However, there is no 
optimal design that can accomplish 
this task. Instead, several tools and 
designs are used to build a complete 
big data system. The Lambda 
architecture addresses the problem 
of arbitrary computing functions 
parallel to distributed data in real-
time. It consists of a three-layered 
architecture: batch, speed, and 
serving layers (see figure 6).   
1) The Batch Layer  

It has two tasks. The first is to 
store the continually growing 
and immutable master data in a 
distributed file system, a 
Hadoop distributed file system 
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(HDFS). The second task is to 
precompute batch views for this 
distributed data by using 
MapReduce. Those batch views 
can be used to reply to incoming 
queries with low read latency.  

2) The Speed Layer 
Comparing to the batch layer, it 
does not precompute the views 
for the entire data. It also has 
two tasks. The first is to 
compute views for recently 
incoming data from various 
data sources. It is possible to 
enrich the master data by 
joining other related data 
sources. The second task is to 
store and update the recent 
incoming data in real-time 
because the older data is stored 
in the batch layer. 

3) The Serving Layer  
The serving layer is a 
specialized, distributed 
database system. It indexes the 
batch views so that they can be 
queried in a low-latency and ad-
hoc manner. Then the serving 
layer joins the batch layer 
results and the speed layer 
computations on the data. So, it 
can provide real-time 
computation results over the 
entire data. 

 
 

Fig. 6. The components of Lambda Architecture 
 
 

III. PROPOSED APPROACH  
 

A. Enterprise Layering & Lambda 
Architecture 

 
The detailed component of 

Lambda Architecture used in this 
proposed framework architecture, 
as shown in Figure 7. 

 
Sensors are Snort NIDS using 

subscribed community rules. The 
sensor can be placed anywhere over 
the Internet as long there is internet 
access to send the log to the DC. 
MQTT client is installed inside the 
sensor to send the alert data. The 
sensor uses MQTT Protocol to 
publish the alert data to the MQTT 
Server located on the defence 
centre.  

 
MQTT Server, located in the 

DC, acting as MQTT message 
broker and equipped with a 
connector to distribute data from 
MQTT broker to Apache Kafka 
Broker that is on the same network 
as the defence centre. Bridging 
process, connecting between 
message inside MQTT Server and 
Apache Kafka.  

 
Apache Kafka with multi-

broker configuration is located in 
the same network as the defence 
centre. It streams the data to 
Apache Spark Instances.  

 
Data storing jobs to HDFS, the 

data streamed from Apache Kafka 
will be stored inside the HDFS 
through Apache Spark. Stored data 
is raw immutable data. We can 
enrich the data with additional 
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attributes like local date-time, 
geographic information, and 
readable timestamp in this stage.  

 
The data stored used inside the 

HDFS for batch processing using 
Apache Spark, that is,  data 
aggregation in minutely, hourly, 
daily, weekly, monthly, and yearly. 
The results stored as batch 
processing in the form of JSON 
files in HDFS. Our main reason to 
reduce the network latency when 
batch processing or aggregation 
occurs.  

 
Apache Spark used as structured 

streaming to perform automatic 
data aggregation sent by Apache 
Kafka. The source of data used in 
structured streaming is originated 
directly from Apache Kafka.  

 
The result of data aggregation is 

stored in its respective aggregation 
table. There are two states of data 
results, temporary and permanent. 
Permanent data results will be 
stored inside the Cassandra table as 
time-series data. In contrast, the 
provisional data is published via 
Apache Kafka.  

Both data results from batch and 
stream processing will be stored in 
the Apache Cassandra database. 
The result of all user queries and 
also the batch processing are stored 
in the Apache Cassandra.  

 
Apache Cassandra, as the 

central database that acts as a 
permanent data storage and data 
source for all related services. 
Aggregated data is in the form of 

time-series data. The frequency of 
data retrieval and data write is 
relatively high, so to reduce the 
latency, Apache Cassandra is used 
due to its ability to serve the query 
using the clustered instance of the 
database. 

 
Batch metric services is a 

collection of services that are 
responsible for doing a query from 
Apache Cassandra. Temporary data 
as a result of the stream processing 
will be published to Apache Kafka. 
Each aggregation result will be 
published on a different topic.  

 
The temporary data will be 

published on a different topic. 
Apache Kafka is used as a message 
broker based on its function to 
provide real-time data. Due to the 
high write rate of Apache Kafka, it 
certainly makes the web services to 
consume the data at low latency and 
much more efficient needs of the 
resource.  

 
By Apache Kafka, stream 

metrics will allow clients to get 
real-time data with low latency 
while still maintaining resource 
efficiency. The application of 
stream data can be in the form of a 
live graph that gets updated 
periodically.  

 
Mongo DB is used to store the 

set of user information, i.e., user ID, 
organization ID, and sensor ID. 
Service for preserving Users and 
sensor management  

 
Users can access all services 

through the REST API gateway. 
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REST API gateway is the only 
gateway between the client and the 
services. It also acts as the load 
balancer for each instance of 
service. Users can also access 
existing services through the 
provided gateway from their 
devices.  
 

 
 

Fig. 7. Details of our proposed framework that 
implemented in Lambda Architecture 

 
B. Metrics 

 
Log data processing performed 

in Apache Spark consists of 
geographic information, 
timestamp, and time zone 
adjustments for sensors. These 
sensors may be placed in different 
locations and different time zones. 
We use Unix Epoch as the format of 
timestamp data sent by the sensor 
Aggregation is done in per second, 
per minute, per hour, per day, per 
month, and per year window time. 
The list of performed aggregations 
are: the event hit on 
company/device id, signature hit on 
company/device id, protocol hit on 
company/device id, protocol hit by 
source/destination port on 
company/device id, IP 
source/destination hit on 
company/device id, country 

source/destination hit on 
company/device id with each of the 
metrics counted by granularity as 
mentioned above. 
 

 
IV.  EXPERIMENT AND 
DISCUSSION 

 
A. Sensor Deployment Time  

 
The experiment is carried away 

to examine the time used to deploy 
the sensor that builds on top of 
Docker containers. 

 
TABLE 1: Sensor deployment time. 

 

 
Debian 
Based 
Image 

Alpine 
Based 
Image 

Build 
Time 30 Minute 15 Minute 

Image 
Size 623 MB 562 MB 

 
From TABLE 1, we found that 
docker containers with Alpine as its 
base images are able to deploy the 
sensors two times faster than 
Debian-based containers. 
 
B. Selecting Message Delivery  

 
In order to find the best method for 
data transport between sensors with 
a defence centre, our experiment is 
as follows:  
(1) The sensor generates 1000 

messages/ second. Each 
message has a size of 924 bytes. 

(2) The method that is compared is 
between MQTT and Apache 
Kafka via the internet network. 
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TABLE 2: Performance comparison of 
MQTT and Apache KAFKA 

 

 

Msg 
Rate: 

Latency 
MQTT 

Msg 
Rate: 

Latency 
With 

Kafka 
Pub 

Message 
(1000@924 

Bytes) 

210 
msg/sec 
: 340ms 

17 
msg/sec : 

31819 
ms 

Average 
Latency 543ms 33945ms 

 
Our experiment shown in TABLE 2 
found that MQTT has a higher rate 
and lower latency than Apache 
Kafka through the internet network. 
 
C. Kafka Write Throughput 
Data ingestion is the phase where 
data sent through the sensor to the 
data centre are collected in one 
place to be distributed to the next 
phase. Apache Kafka [16], [17] is 
one of the ingestion data 
frameworks that is reliable and has 
high latency when it comes to data 
ingestion. However, to be more 
convincing in selecting Kafka as 
data ingestion, the experiment will 
be carried out with the following 
specifications. The experiment will 
be carried out by loading the test on 
the single broker Kafka. Three 
experiments will be conducted, 

sending 50 million, 100 million, 
and 150 million data 
simultaneously. Then the average 
message/sec throughput will be 
calculated ". 
 

TABLE 3: Load test on single Kafka Broker 
 

 

 
We send up to 100 million data, 

and brokers can still handle the 
requests. However, when the 
message reaches 150 million, it can 
be seen that there is a significant 
decrease in throughput rate, 
indicating that it takes additional 
new brokers to help handle 
concurrently. We summarize our 
load test in Table 3. 

 
 

V. CONCLUSION 
 

From our experiment can be 
inferred that there is a significant 
performance gap between MQTT 
and Apache Kafka when it comes to 
delivering data through the Internet. 
The limited bandwidth possibly 
causes this since data transportation 
takes place through the Internet. 
Meanwhile, Apache Kafka 
outperformed MQTT in data 
volume and ingestion speed at the 
local network where data ingestion 
mostly occurs. 

 

Number of 
Messages 

(1 msg = 924 
Bytes) 

Message / 
Second 

Bytes / 
Second 

50.000.000 420.000 110 M 

100.000.000 650.000 172 M 

150.000.000 530.000 132 M 
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Our proposed framework 
architecture successfully handles 
the computational load from the log 
data that originated from many 
sensors. The sensor built on top of 
Docker has a lower deployment 
time than the sensor's manual 
deployment. MQTT protocol also 
has better performance in sending 
the sensor to the defence centre than 
Apache Kafka due to its lightweight 
traits that lower latency than 
Apache Kafka through the Internet. 
Although Apache Kafka is 
excelled, MQTT can ingest many 
data in the local network needed to 
collect data from many sensors. We 
share the installation manual and 
source files of the Mata Elang at 
https://github.com/mata-elang-
pens. 
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